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The predictions of the extended predator–prey model of the coupled spectral dynamics of drift
wave–zonal flow turbulence are presented. The model exhibits three possible types of
time-dependent solutions, depending on system parameters, which are: !1" quasiperiodic bursting of
the transport and turbulence intensity levels; !2" oscillatory relaxation to a stationary state, and in the
collisionless limit; !3" an intensity pulse followed by saturation of zonal flow. These solutions are
consistent with the time dependent behavior recently observed in the global gyrokinetic simulations.
© 2001 American Institute of Physics. #DOI: 10.1063/1.1415424$

The pressure gradient driven instabilities #such as the ion
temperature gradient instability !ITG" of drift waves1$ in
magnetic confinement devices have been the subject of great
concern because of their capability to drive transport. How-
ever, after a decade of intensive research work, summarized,
e.g., in Ref. 2, and especially due to significant recent ad-
vances in computer simulations !see, e.g., Ref. 3", a consen-
sus seems to be reached that the problem may be very well
self-regulating. The optimism stems from the nonlinear de-
velopment of the drift waves leading to the excitation of
random sheared flows across the gradient. These flows !often
called zonal" are not only intrinsically incapable of driving
transport but also reduce the intensity of the parent drift
waves and thus the transport associated with them.4–7

The almost universally accepted mechanism of the zonal
flow generation is the modulational !as given, e.g., in Ref. 8"
or parametric !see, e.g., Refs. 9 and 10" instability of the
Reynolds stress of the drift waves. Based on this concept a
model for description of the coupled drift wave !DW"–zonal
flow !ZF" turbulence has been suggested in Ref. 8. This
model has a characteristic form of a ‘‘predator–prey’’ system
in which the population of the DW quanta !prey" growing via
linear !ITG" instability, generates ZF !predator" through the
Reynolds stress. Concomitantly, the zonal flow growth regu-
lates the prey !DW" population. Starting from the modula-
tional instability of drift waves, this formalism yields a
coupled system for the drift wave and zonal flow spectra.
The ZF reduces the DW population by random shearing thus
making the entire system distinctively self-regulating. A dif-

ferent but related example of the parametric zonal flow gen-
eration that has been given recently in Ref. 10, is based on
the toroidal coupling of the drift wave triads. Some further
possible mechanisms for zonal flow generation and satura-
tion are still debated. For example, the authors of Ref. 11
argue that they may be generated by the !secondary" Kelvin–
Helmholtz-type instability of radial streamers occurring in
the ITG unstable primary drift wave. Another interesting
suggestion12 invokes the geodesic acoustic modes at the edge
transition region.

The steady state solutions of the predator–prey system
have been analyzed in Refs. 8, 13, and 14. Such systems are,
however, dynamical systems that, along with the equilibrium
solutions, often display strong nonlinear oscillations in popu-
lation densities caused by their mutual self-regulation. Pre-
cisely this behavior has indeed been observed in global gyro-
kinetic simulations.3,15 However, since such large codes have
only been run for a few oscillation periods, the precise nature
of the burst phenomena is not understood. It is also important
to note that in this model both the populations ‘‘live’’ in the
wave vector space rather than in coordinate space. This is
crucial since the mechanism by which the ZF ‘‘kills’’ DW is
somewhat indirect, namely the DWs are ‘‘expelled’’ by ran-
dom shearing to the region of high radial wave numbers kr
where they are !linearly" damped. ‘‘Shearing’’ is thus just
another word for the three wave interaction generating small
radial scales !high kr) in the drift wave turbulence. It is clear,
however, that this type of dynamics cannot be captured by
reduced models with only a few modes. Indeed, recent analy-
ses of the gyro-kinetic simulations6,15 point at the excitation
of an extended kr spectra of the DWs that broadens duringa"Electronic mail: mmalkov@physics.ucsd.edu
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the periods of enhanced ZF flow activity which is indicative
of shearing.

In this Letter we study bursting solutions of the
predator–prey model for the purpose of detailed comparison
with the simulation results. As in our previous steady state
analyses, we shall focus on the dependence of the solutions
on ion collisionality. This is important because the ion-ion
collisions are shown to be the only secular !nontransient" ZF
damping process.16 However, in contrast to the steady state
studies we shall focus on the parameter regime close to mar-
ginality, where bursting is usually observed.15 Also, colli-
sional friction has been accurately treated in simulations15 so
that now detailed comparisons can be made, including the
examining the causal relation between ZF and DW turbulent
component !phase lag" and the limit of zero collisionality
!Dimits shift regime7". As we argued earlier,14 these phenom-
ena cannot be properly addressed within the steady state
treatment.

The drift wave evolution in random zonal flow field is
described by the following equation for the spatially aver-
aged number of quanta density %N(kr ,k&)':8
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Here the diffusivity in radial wave number kr is related to the
ZF intensity !,q!2 through Dk"-qk&
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2 . The ZF potential is taken to
be ,(r ,t)"-q,q exp(iqr!i/qt). The choice of the response
function R depends, generally speaking, on the turbulence
regime; for the case of relatively weak self-nonlinearity *+k
of the DWs (*+k%N'/NB#)k , where NB is the background
turbulence level14", we may set R"01(/q!qVgr). Here
Vgr"(+k /(kr is the radial component of the drift wave
group velocity. For a stronger DW nonlinearity, namely,
when the two terms on the right-hand side of Eq. !1" are
approximately in balance, the response function R broadens
to R")k /#)k

2$(/q!qVgr)2$ , so that the linear result can
also be recovered by taking the limit )k→0.8

Generation and damping of zonal flow is, in turn, gov-
erned by the following equation:

!( t$)d"!,q!2"2I/!,q!2. !2"

Here )d is the collisional damping rate. The calculation of
the zonal flow excitation rate I/ may be conveniently ap-
proached by considering the instability of the DW packet
that has the quanta density number modulation with respect
to its perturbation of the form Ñ2exp(iqr!i/qt). The corre-
sponding dispersion equation reads8,17
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Here the group velocity is Vgr"!2V*krk&.s
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and the drift velocity V*"!(cTe /eB)d ln n0 /dr. It was
shown recently18 that unless the spectrum %N' is monochro-
matic in both kr and k& , there is an amplitude threshold for
the zonal flow generation. It is, however, still reasonable to
assume that there is a distinct k&"k&0 #prescribed by )k in
!1"$, since random refraction acts only on kr . It is convenient

to use Vgr as a new variable in place of kr which we denote
V"Vgr(kr ,k&0). An important role is then played by the
caustics kr"%kc , where (V/(kr"0. This can be seen from
Eq. !3" after transforming it to the following form:
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where C"//q and we have denoted N(V)"N$!N!. Here
N% are the values of N taken at the same V but at different
kr , namely inside (!kr!&kc) the region between the two
caustics and outside of it (!kr!3kc). The integral in Eq. !4" is
taken between the minimum and the maximum of the func-
tion V(kr). It is reasonable to assume18 that N(!kr)
"N(kr), so that N(!V)"N(V) in Eq. !4". To better under-
stand the solutions of Eq. !4", using an obvious constraint
N(%Vm)"0, we first use, for the purpose of clarity, the
parabolic approximation, N(V)"N0(1!V2/Vm

2 ). The last
equation then can be written as
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where 4"arg(1!C/Vm)!arg(1$C/Vm). This is an exact,
though implicit, solution to Eq. !4". We may assume that
!C!#Vm and thus drop 4 and the ln term in denominator.
The solution then becomes explicit and the threshold nature
of the instability is clearly given by the second factor in Eq.
!5". In addition, this consideration shows that being inter-
ested in the case of small C/Vm , we may generalize the last
result for an arbitrary N(V). A simple evaluation of Eq. !4"
yields

/"
iqV

0(N/(V #
V"0

$ "
!Vm

Vm dV
V

(N
(V $

V*
cs
2k&0

% . !6"

Now we may obtain the evolution equation for Dk in Eq.
!1",

!( t$)d"Dk")̄kDk , !7"

with the spectrum averaged growth rate )̄k given by
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Since the zonal flow growth rate I/ increases with q,
the main contributions to the integrals over q in the last
formula should come from the short scale cutoff q"qmax of
the zonal flow spectrum !,q!2. The latter can be estimated
from the restriction that the zonal flow instability time scale
be longer than the geodesic acoustic mode !GAM" period,
i.e., I/'cs /R !see Ref. 19", where R is the major radius of
the torus. This requirement differentiates the shear layers
considered here from GAMs. Therefore, in Eq. !8" we may
set )̄k"2I/(qmax), where qmax , as we mentioned, comes
from the relation I/"cs /R . Now Eqs. !1" and !7" form a
closed system that may be easily analyzed.

To understand the dynamics of coupled DW–ZF turbu-
lence, we integrate the system formed by Eqs. !1" and !7" in
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time for a simple model of the DW linear growth rate )k
shown in Fig. 1 together with two DW kr-spectra scanned at
the times indicated in Fig. 2. There are a number of other
parameters involved in these equations and we leave the scan
of parameters space out of the scope of this Letter. One may
identify, however, the most critical parameters that control
the selection of one of the three types of behavior:

!1" Bursty relaxation to a steady state;
!2" quasiperiodic bursting;
!3" one pulse of the DW followed by the ZF saturation.

One of the most critical system parameters is the ZF
damping )d , and the only situation in which !3" occurs is
where )d"0. This is clearly a very special case so that it is
convenient to start from the general one, namely, )d(0.

The type !1" dynamics !bursty relaxation to a fixed point,
Fig. 2" is perhaps the generic one. It occurs rather robustly
for sufficiently strong linear and/or nonlinear DW damping
and if the threshold of ZF generation in Eq. !6" !the second
term in the brackets" is sufficiently small.

The type !2" behavior is shown in Fig. 3. For this to
occur the amplitude threshold of the ZF generation is critical.
If we !artificially" suppress it, so that the ZF is generated
starting from zero DW intensity !as in the monochromatic
case17,18", the type !2" dynamics occurs only if min )(kr)30
and *+"0. In other words, there must be no linear and
nonlinear dissipation of DWs, which is clearly unrealistic.
Thus, quasiperiodic bursting is unlikely.

In both these cases there exists a causal relation !phase
lag" between the DW and the ZF pulses, so that the latter
follows the former, precisely as observed in simulations.15
Note that similar time delay of ZFs has been observed in
numerical studies of the resistive ballooning turbulence sys-

FIG. 1. The linear growth rate of the drift waves and their spectra just
before the onset of the zonal flow (t"16.6) and at its developed regime
(t"23.6, see also Fig. 2".

FIG. 2. The sequence of turbulence pulses that time asymptotically con-
verges to a fixed point rather than a limit cycle. The maximum growth rate
of the zonal flow coincides with the maximum of the DW intensity, as
illustrated by the vertical dotted line. Two other lines indicate times at which
the kr-specra shown in Fig. 1 are scanned.

FIG. 3. Almost strictly periodic sequence of bursts !limit cycle" with only
the first one slightly stronger than subsequent ones due to the transient
effects caused by initial conditions. In this case the initial spectrum was
taken to be significantly broader than in Fig. 2, which does not influence the
time asymptotic behavior.

FIG. 4. The system dynamics in the limit )d→0 !Dimits shift regime".
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tem in Ref. 20. Similar relationship between the transport
driving fluctuations and the ZF intensity have been demon-
strated in recent experiments with the H-1 heliac21,22 and in
the subsequent data analysis.23 The maximum of the DW
intensity coincides with the maximum of the ZF growth, Fig.
2. The decay time of ZF flow is set by )d . The interval
between the bursts, however, while growing with )d

!1,15 also
depends on other parameters, such as *+ . In all cases the
onset of the ZF results in broadening of the DW spectrum in
kr , so as its tail spreads over the domain of linear stability,
Fig. 1. This ultimately forces DW damping.

Based on the above remark, the case !3" ()d"0) may be
interpreted as a special case of the quasiperiodic dynamics
!1" or !2" with an infinite period. Indeed, only the first DW
burst occurs whereas the subsequently generated ZF never
decays, so that the next DW burst never follows due to the
prohibitively high shearing rate in Eq. !1". Therefore, in this
regime the DWs are completely suppressed by the residual
ZF. When the system reaches this steady state, it may be
identified with the Dimits shift regime,7 as shown in Fig. 4.

Finally, one should note that in both cases !1" and !2",
one can determine either the time averaged or time
asymptotic level of the DW intensity as a function of system
parameters. The DW intensity, or equivalently, the ion radial
transport has been studied in terms of its dependence upon
the collisional damping of the ZF, )d in the recent gyroki-
netic simulations.15 The approximate scaling %N'5)d

0.75 has
been obtained. Figure 5 shows a fit to this scaling obtained

from our simplified model. Although no careful optimization
by varying other system parameters such as *+ or ) has
been made, the model fits the simulation data reasonably
well !note the latter only varied ion collisionality".

In conclusion, the variability !bursting" phenomena fre-
quently observed in the coupled drift wave–zonal flow sys-
tems may be satisfactorily understood in the framework of
the dynamic predator–prey model.
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